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1 Introduction

Consider k independent logistic populations r1,, .Ik with unknown means 01,. O.k

Let 0[i] <ý ... < 0[k] denote the ordered values of the parameters 01,... , Ok . It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown.
A population Ii with Oi = 0[k] is called the best among the k underlying populations.
In many pratical situations, we may not only be interested in the selection of the best
population, but also require the selected population to be good enough compared with
a given control. The problem of selecting the best population has been studied by many
researchers. Gupta and Panchapakesan (1996) provided a comprehensive review of the
development in this area. It should be pointed out that the logistic distribution serves as
a statistical model in many practical situations, see, for example, Balakrishnan (1992).
The statistical selection problem for logistic populations has been studied in Gupta and
Han (1991,.1992), among others.

In this paper, we employ the empirical Bayes approach to select the best logistic
population provided it is also as good as a given control. We describe the formulation of
the selection problem and derive a Bayes selection procedure in Section 2. In Section 3,
we construct an empirical Bayes selection procedure. Then we investigate the asymptotic
optimality of the proposed empirical Bayes selection procedure in Section 4. A simulation
study is carried out to investigate the performance of the proposed selection procedure
in Section 5.

2 Formulation of the Selection Problem

Let II,..., Hk be k independent logistic populations with unknown means 01,. . . , Ok.

Let 0[i] < ... _• 0 [k] denote the ordered values of the parameters 01, ... , Ok. It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown.
A population 7'i with Oi = 0[k] is considered as the best population. For a given control
00, population 7ri is defined to be good if the corresponding 9i > 00, and bad otherwise.
Our goal is to select a population which is the best among the k populations and also
good compared with the standard 00. If there is no such treatment, we select none.

Let Q = {Q = (01,..., Ok)} be the parameter space. Let a = (ao, ... , ak) be an action,
k

where ai =0,1;i= 0,1,...,k and L ai = 1. For each i = 1,...,k,ai = 1 means that
i=O

population 7i is selected as the best and also considered to be good compared with 00.
a0 = 1 means that all the k populations are excluded as bad and none is selected. We
consider the loss function
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k

L(_, _) = max(O[k], 00)- E ai0j.
i:=O

It is the absolute error loss.

For each i = 1, ... , k, let Xil,. . . , XiM be a sample of size M from the logistic
population rI = L(0i, o.2) which has unknown mean Oi and unknown variance (7r2 o o)/3,
that is, the conditional density distribution of Xij given 8i and ai2 is

1 e-(xi-°i)l'
-oo1 e(Xi-i)/Ui)2' < Xi < 00. (1)Ori (I + e-(Xi-°jI/aj)2)

Since logistic distribution is symmetric about its mean, the mean and the median of
a logisitc population distribution are identical. For convenience, suppose M is an odd
number, and we denote M = 2s + 1. We also assume that the unknown population
median (and also the mean) 8i has a normal N(bj, 'rj2) prior distribution with unknown
parameters (pi, r2). The random variables 01,.. . , Ok are assumed to be mutually inde-
pendent. Define Xi to be the median of {Xji,... ,)XiM}, i = 1,...,k. Let fi(xi[9i, o.2)
and hj( , Ti2) be the conditional distributions of Xi given (0j, o"2) and 0i given (ti, i-),

respectively. We have, for i = 1,..., k,

f,(x,!0&,o.•) _ (2s + 1)! 1 (e-(xii-°)/"i)s+l
(8!)2 oU (1 + e-(x,-o,)/1) 2 +2 , -o0 < j < co. (2)

From (2) we see that the density function fi(xiI [, o.•) is symmetric about Oi given 9i,
therefore,

EX, = E(E(Xjj0j)) = EOi = i.. (3)

The posterior density of Oi given Xi = xi is proportional to

(e-(z•i-)i)s+1 2

(1 + e-(xi,-)li)2s+2 "e- -0 i < o00. (4)

"Let _X=(X 1,... , Xk) and X be the sample space generated by _X. A selection pro-
cedure d=(do,... , dk) is a mapping defined on the sample space X. For every Y_ E X,
di(1c), i = 1, . . . , k, is the probability of selecting population 7JH as the best among the k
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populations and also good compared with the given control Oo, do(IX) is the probability
of excluding all k populations as bad and selecting none. Also, E di(x_) - 1, for all

xEX.

Under the absolute error loss, the posterior median is the Bayes estimator of Oi. We

denote ýoi(xi) to be the posterior median of Oi given Xi = xi, i = 1,..., k.

Under the preceding statistical model, the Bayes risk of the selection procedure d is
denoted by R(d). We have

R(d) ,[E di(x)=wi(xi)]f(x)d(x_) + C, (5)
"i=O

where

C = fn max(0[k], Oo)dH(O),

H(O): the joint distribution of 0 = (01,.... Ok),

fi (xi) = fR fi (x i i)h O i r') d0i,

fO0(xo) = 00.

For each x E X, let I(x&) = {iI•i(xi) = max Wj(xj),i - 0,1,...,k}, and i* --~o_<j<_k

minfili E I(x)}. Then a Bayes selection procedure dB(x_) = (d'(_K), ... , dB(x)) is given
as follows:

{ 0, for j = i*. (6)

3 The empirical Bayes Framework

The Bayes selection procedure dB(x) defined in Section 2 depends on the unknown
parameters ([Li, r-2), i = 1, . .. , k and the specific form of ýo (xi). Since the parameters
and the specific form of Wi(xi) are both unknown, it is impossible to implement the
Bayes selection procedure for the selection problem in practice. In the empirical Bayes
framework, it is generally assumed that there are some past observations when the
present selection is to be made. At time I = 1,. . . , n, let Xijl be the j-th observation
from Hi, that is, for each i = 1, . . k, let
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Oil - N ( , ), 1= 1,...,n, (7)

and

Xii•j L(Oi,, a j = 1,...,M. (8)

For 1 = 1,... n, denote Xi,l to be the median of (Xill,..., XiMI), and

Xi (n) = 1 iz 9

n - Xi', (9)

in

S(n) i (Xi,i - Xi(n))2. (10)

Then,

E(Xi,) = E(E(Xij,1 10i)) = E(Oil) = /-i, (II)

and

Var(X<i,) = Var(E(Xi,1 1•O,)) + E(Var(Xi,i0 Oi))
= Var(Oil) + E(Var(Xi,iIOii))
= ri + E(Var(Xi,iIOii))

< 00. (12)

Denote vi, Var(Xi,l). Since (Xil, ... ,Xin) are i.i.d., by the strong law of large
numbers, we know that as n -+ oo,

fX j(n) - p Iui, a.s. (13)

S2(n,) -+vi, a.s.

To derive the empirical Bayes selection procedure, we first consider the following
lemmas. The following lemma is from Seriling (1980).
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Lemma 3.1 Let {Yi, 1 < i < m) be m i.i.d. random observations from continuous
distribution function F; also let ý and ý be the medians of {fY/, 1 < i < m} and F,
respectively. Then, for any e > 0,

P{l•-• > e} < 2e2m6, (14)

where J, = min{F(ý + c) - , F( f(-)}.

Put c' = minl<i<k ai, U* = maxl<i<k 47i. Xil, ... , XiM are i.i.d. from L(Oi, ai`), which
has the following cumulative distribution function

1
F(ti) = 1 + e0t0-°)/•i -o < ti < 00, (15)

and for 0 < e < o,'

1 1 e/Ui - 1
.. ~F(Oi + • F(Oi -)-2(/• +1-> 2e+1o* (16)

2 (-ef/Ui + 1) - 2 (e +1)oa* (6

Given Oi, Oi and Xi are the population median and sample median respectively, we
have, from Lemma 3.1,

--(2s+,)e2

P{IXi - Oil > 6} < 2e(e+1)2•*2. (17)

For any 0 < E < o', denote Si = {x E : Ilxi-Oil < e}. We show that the
conditional density of Xi given Oi and ar2 is approximately N(Oi, oj2) as s -c.

From (2), the conditional density of Xi given Oi and a2 is

f , (x 1 jO io ) = (2 s + 1 ) ! 1 (e - ( x' - °i)/ Ii) s+ l

(8!)2 oai (I + e-(xi-°0)/i))2s+2

(2s + 1)! 1 1
- (3!) 2  ci (2 + e-(xi-1)/0'i + e(xi--i)/1i)s+1  (18)

By Stirling's formula, when s is large enough,
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(2s + 1)! 2(2s+2)- ;Z --• •/+ 1.(19)
(8!)2 ,2-7

Also choosing e = es 4 0 to be a sequence of fixed numbers which tend to 0 as s --* o,
by Taylor's polynomial expansion, we have

log(2 + e-(±i-')/i + e(xi -i)/'i) - log 4 + (Xi - (20)

4 o72

on Si. When s -+ cc, from (17),

-- (2s+1)e 2

P{_X 0 Si} < 2e2(T+1)2
-

2 -+0. (21)

Therefore, we see that as s -+ oo,

X, 11, -i4--- (22)
fi(x~j6i, •) • -e -, (22V2-'r =Is + 1 0'i

that is, A (xi10j, o2) is approximately N(Oj, 2 o,2)

From above, we can see that for sufficiently large s, the conditional density of Xj,1
is approximately N(O9, 2 o.2., given 0i and up. Since the prior distribution of Oi is
N(pi, -rj2), the unconditional density of Xi,j is approximately N(Mt, r- + 2 oj2).

For each population FIj, let Wj2 (n) be the measure of the overall sample variation for
the past observations. That is,

Xii = 1 7 ý'1 XiiMi = 3 g=l i (23)

W W2 (n) = (M-1)n Z=l El=(Xi -I 2=) 2.

Then we define, for i = 1,.... k,

^ -L Wi (n)2,

." =(24)

_2 m = m '2 _ 2 &i2, o).
S+1
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and

X +-•2 + 2 ,2)/i if i 2 -- i2 > 0,
is+ ) = (8,+1 Z 7

--i-_-& < 0, (25)

o(X o ) = o 0 o .

Then for each x E X, let f(i) = {iI@ (xi) = max O (,j),i = 0,1,... k}, and- 0O<j<k'

= min{ili E i(x)}. We propose the following empirical Bayes selection procedure
d(,')() = (d• )... . (1)) as follows:

d'") = 1
(26)

j • 0, for j: *.

4 Performance of the proposed selection procedure

Consider the empirical Bayes selection procedure dlns)(x) constructed in Section 3.
Let R(d(n's) (x)) be the conditional Bayes risk given the past observations {Xijl, i =
1,...,k;j = 1,...,M; and I = 1,...,n} and ER(d(',')(x)) the Bayes risk of the em-
pirical Bayes selection procedure respectively, where E is the expectation taken with
respect to the past observations {Xijj}. From (5),

k

R(dns) (:N)) = J[E dns)O(_• )]f(_•)(,) + C. (27)

Note that R(d(n',)(x)) - R(dB(L)) > 0, since dB(IC) is the Bayes selection procedure.
Therefore, E(R(d(n,")(x)) - R(dB(x))) > 0. We use the nonnegative difference regret
risk E(R(d(n'•,)(x•)) - R(dB(I_))) > 0 as a measure of the performance of the selection
procedure d (L)x).

We first state some facts about opj(xj), the posterior median of 9i given Xi = xi and
[i. From the definition of ýpi(xi), we can see that ýoj(xj) is between xi and pi. Besides,

Lemma 4.1 When s is large enough, for 1 < i < k,

( - xi I 2  10 s (28)
OF9S
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Proof. We only prove ýoj(xj) < x, + 2o l-g- here. The proof of oi(xi) _ xi - 2zj logs_ 12", it suffices to show that
is similar. To prove ýoj(xj) < xi + 2ogsi t s,

[00 (2s + 1)! 1 1 /0%)S+I

=fx,+2ou -V/EF (s!)2 a, 72=r, (1 + e(Oi-xi)h•,) 2s+2 e

= 0 0T (2s±+ (1- ± ) s. d-- 0, (29)

as s -- co. We first show

(2s+± 1)! / e° )s+l

t(O,s) := (!)2 (+1 2)2 ---+0 as s -+ oc, (30)

uniformly for 9 >_ 2 log.Obviously it is enough to consider the case of 0 = 2los5

since t(9, s) is decreasing on 0 > 0. When 0 = 2VElogs and s is large enough, by Taylor's
formula,

log(1 + eo) = log2 + -90+ o2 +0(02), (31)
2 8

and by (19), when s is large enough,

lg(2s±+1)! 1
log(s)1 < 2(s + 1)log2 + ± log(s + 1). (32)

(S!)2 2

From (31) and (32), we obtain that

log t(9, s)

= (s + 1)[0 - 2log(1 + e')] + log(2s±l)
(s!)2

-"< -2(s +1) log 2 -s+lo2 +2(s+1) log2 + logs+ o(s02)4

s+l 1
- -- ) log s + o(log s) ---+- , (33)

.s 2
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as s -+ oo. Therefore, (30) is proved, from which we can immediately see that (29) holds
true. It completes the proof of Lemma 4.1.

The next lemma is well known and can be found in Baum and Katz (1965).

Lemma 4.2 Let X1,..., X,1 be i.i.d. random variables with mean 0. Suppose for a > 1,
EIXji'• < oo, for i= 1,...,n, thenforany e> 0,

n

P{I ZXi/nj - e} = o(n-(a-1)). (34)
i=1

As a consequence of Lemma 4.2, we have

Lemma 4.3 Let X1,..., Xn be independent random variables, with mean EXi = j and2 S" =i In E• 1 (X, )•2.
variance VarXi = oa, for i = 1,..., n. Also letX= ZX and ,-- -
Suppose for i = 1,..., n and a fixed number a > 2, EjXjj'2 < oo, then for any E > 0,

P{lS2 -_.21 > e} = o(n-(a/2-1)). (35)

The proof of Lemma 4.3 can be found in Gupta and Lin (1997).

Since EX41 < 00, for any e > 0, by Lemma 4.2,

P{Ifij~- /til > 6} = o(n-3), (36)

also by Lemma 4.3,

Pf -I i_ 1 5 = o(n-1). (37)

Similarly, we have for any e > 0,

P{lo-2 - a(' e l = o(n-1). (38)

When s is large enough, vj2 -
2 j-2 > 0. Therefore, from (37) and (38), when s is

sufficiently large,

pfýi 2 0<O = o(n-'). (39)
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Besides, r2 = vi - E(Var(Xi,110i)) by (12) and

E(Var(Xi,1O,)) = 2- 9)2(2s + 1)! 1 +l-(exil-O)/0'i8+1
(s f!) 2 0_(1 + e-(xjj-+i ) ))2s+2

a 0 sT)X2  ((1 e±ex)2) dx. (40)

We have

Lemma 4.4

/_x22 l) l-)] dx o .(41)

Proof.
00x2 (2s + 1)! ex S8+I

0) 2 i ) ((1 +jex)2 ) dx
2fo°x 2 (2s + 1)! ex -,•+1

(s!)2 +lex)2

= 2 ( o s+f+ f3 00)x (2 sj l)! ex s+1

T1 +T 2 +T 3. (42)

By Stirling's formula, when s is large enough,

T1 = 2 (2s + 1)! f x2 ex ,+1T -21~~ "x dx
(s!) 2  

0 o(1 +-ex)2)

< 2.2 2 (s+1 v/ 1 2-2(s+1) f"'Yx2dx

0 0(log) (43)

Using the same approach as in the proof of Lemma 4.1, we have

T 2 32 f 2( e± dx
(2s!)2 + ex)2
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2 2(2s +1)!( eV8 3+ 3 X 2d- (S!)2 ( +e , )-,/ 2d

(logs) (44)

Moreover,

T3 = 2(!)2 fx (l+ex)2 )dx

< 2 (2s + 1)! 00 x2 e-(+l)xdx

= o( S) (45)
OF9S

This completes the proof of Lemma 4.4.

From Lemma 4.4, we observe that when s is sufficiently large,

E(Var(Xi,,,0i)) = o( g S), (46)

and therefore, by (37), (39) and the definition of f?, for e > c --7-, where c > 0,

PfI÷P - -rI _ e} = o(n-1), (47)

and furthermore,

P{i,/f• <_!v2/(2"r2)} = o(n-1). (48)

Next we investigate the rate of convergence of E(R(d(',s)(x_))-R(dB(x_))). Let P,•,, be
the probability measure generated by the past observations Xjjj, i = 1,... k; j = 1,.. M

and l = 1,...,n.

SE(R(d(,,s)x- R(dB(x)))
k k

= E J Pn,•{i* = i, = j} Ip(xi) - ýoj(xj))f(x)dx
i=0 j=O



f PnsIi* = i7 0* 1 }(ýOi(xi) - 0)f(0d

+ E fx Pns.{j* = j"? = j}Qp(X0 - (pj~j)f(zdxJ)f~

Z* jjWj~ kp W(x~)-p~j))fW (y)I:
T=1 j=1 R2

k

25 L, P O,{j(xi) - Wi (xi) I > I i (xi) - 00 I}I (xi) - Oo fi (xi) dxi
k~ 8 I@(~ k Wi(~) >(xi) - 9Oj}k (xj) -9~~x)x

±2EJP fR2{Ic Xoi(xi) - Wi(xi)I > I} Ix~ -i (xi) (-)dxj ( 51)

lxi -Ool x fi (xi) fj x~ (xj) -x d ox <2j(2

Fon r~ and ,ad ,k e

Xi xi: W~x) 0 6,120



f f2(xi) dxi • Ixj-6OI,<2,} fi(xi)dxi

f iioi~i~r dxi

Thus,

8k 2k

k

+2ZJP,,a 10i(xi) - wi(xi)I > e}[Ijpi(xi) - ,uil + 1pi - 9oI~fi(xi)dxi. (54)

Moreover,

12 = 2ZZ k .Jo~i ix~ > I~i(xi) - woi(xj)}l(~
i=i j-1 L' 2i

x~~ fi~(x~)j}xj~d(id

+2EZ fR2 X,. P O8 i@ (xi) - Wi (xi) I > wix)2 ýO x)IW x)- ýj(j

+2 1 Z = " JR PZ,8{ ~x) A ~(xi) j >xj) i d(xj)

Fro (28) whe k Lis large noughj~dx (xj)-i•~adI~x)- .Teeoe
when s i= is1 sfi ietylr ,

+2x ,i (~xi) - wi (xi) I > c i (xix) Xi- Vj •j 3I (6

Thus, similar to (53),
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f fi(xi)fj(xj)dxidxj < V(-7min(T), Tj)(

We observe that

k k 12c 2
12 _<ý 1: 7, v"mn(r,

i=1 j=l \/rmin(ri, T-)
k kf

+2EZJPn,s,{Ioi(xi) -Wi(x) I> 51}[lwi(xi) -jAil + lwj(xj) -tjujI
i=1 j=1 IR

+ li - .ljl~f(xi)fj(xj)dxidxj• (58)

From (54) and (58), it suffices to analyze the limiting behaviors of

fR Pn, 8{li (xi) - Wi(xi)I > f}y(xi)dx,

fR Pn,O{¢i(xi) - Wo (xi)l > 2}ldxi(X) - pi If (xi)dxi. (59)

We first analyze fR P,,,{Ii(xi) - Wo (xi)l > f}f(xi)dxi. Denote

Yi = {fx :i(xi)- Oil _• 4},
Zi = {X .Ixi- Oil _<I }. (60)

By Lemma 4.1, we know that when s is large enough, l~i(xi) - xil < . Therefore, for
sufficiently large s, we have

R- Yi c R- Z, (61)

and

S (,{ i)( - p (xi)1 > I f (xi)dxi

ýp J(I P,{(x)-~(xi) I > ~.fi (xi Oi, u2) hi (9i ji, ri2 dxi d~iI (1 P,•,,f{IO(x)- o,(xdl > ,,O

14



•J(fR..fi (xi I i, a2) hi (9iIpi, 7-2) dxi A~

JR (JP.,.,{Ij(xi) - Oi fi(x I Oi - i2&~() hi (O i i' x

I i x I -i o2&)(s 1) • ~ixlic~dihi(OiII piTi2)d di

JR (f P-8 Ix~~ ± 4 i

JR (- JR hi OilmiŽ i2d~

f.(JR P.,f{lxij 2Lr Ai2l> -/(Oi )}6fi(xil~i, o2) dxi) hiOl-ii)~

2e1

+~2 JR(RP,{~& r dxi) h i (O iI pi, 7-i) dO i

±o(n-1)

(s± 1)zA
+ R ( JPn,,8fo i - tOl LL -, -h ipr

I~ (J ,, P' -i2 (2r2 Ic }fi )xi hi(aO)di-ir2)hiOig~~)~

42/&

• O(s'1) ±2 X2(+)~V

+ fR R 64-2 74o

±o(n-3 ) + o(n'h)
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1 (8+l)2 u
4

e
2

O(,5-) + e 2X642,1,?~ ±1~7)
_< ++ o(n-

= 0(8-1) + O(n). (62)

Similarly, we can obtain

, ~i (xi) - Wi(xi)I > 2 - Mf=(x)dxj - ) + 0(). (63)

Combining (49), (54), (58), (59), (62) and (63), we finally obtain the rate of conver-
gence of the proposed selection procedure.

Theorem 1. The selection procedure d(x_) defined in (26) is asymptotically optimal
with convergence rate of order o(!) + 0(1'9'). That is,

1 logs
(10) - R(dB(_c))) = o(-) + 0(-). (64)

n 8

5 Simulations

We carried out a simulation study to investigate the preformance of the selection pro-
cedure d(m')(x). The expected risk E(R(d(n,,)(j_)) - R(dB(x_))) is used as measure of the
performance of the selection rule.

We consider the following case in which k = 3, that is, we have 3 logistic populations

HI, 112 and H3 and we would like to use the proposed selection procedure to select the
best population compared with a control.

The simulation scheme is described as follows:

(1) For each n, s and for each i = 1, 2, 3, generate independent random variables Xil, . .
XiM as follows:

{ for l= n,...,n,

(a) first generate Oil from normal distribution with density N(uij, ri2) (65)

(b) then generate Xij1 from logistic distribution L(Oil, o')

(2) Based on the past observations Xijj, and the present observations _X = (X1, .... , Xk),
we construct the empirical Bayes selection procedure d(II)(x_) and compute the condi-
tional difference

16



D = R((d(-',(x_) R(d'(x_))). (66)

(3) Repeat steps (1) and (2) 400 times. The average of the conditional differences on
the 400 repetitions which is denoted by D(n, s), is used as an estimator of the differences
ZR((d(n,s(yx) - R(dB(x_))).

Tables (1) gives the simulation results on the performance of the proposed empirical
Bayes selection procedures. We choose 0o = 0.5, p, = 0.4, /12 - 0.5, and /93 = 0.6,
71-= T2 = T3 =1.

From these results, we see that D(n, s) decreases to zero very rapidly. It supports
Theorem I that the convergence rate is o(!) + 0("K').

Table 1

Performance of the selection rule

n D(ns= 1) D(ns = 10) =(n, 8 50)

5 0.05132320 0.01647000 0.00560000
10 0.03145200 0.00653760 0.00218600
15 0.00636600 0.00367570 0.00079450
20 0.00389500 0.00293676 0.00010670
30 0.00278474 0.00089434 0.00008610
40 0.00283848 0.00008932 0.00004989
50 0.00019361 0.00023743 0.00003889
60 0.00056436 0.00010391 0.00004021
70 0.00023664 0.00009736 0.00002519
80 0.00035232 0.06272372 0.00001805
90 0.00636233 0.00211873 0.00001781

100 0.00036277 0.00012751 0.00001664
125 0.00326283 0.00032525 0.00001033
150 0.03272747 0.00003257 0.00000819
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Graph for Table 1 (when s = 1)
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Graph for Table 1 (when s = 10)
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Graph for Table 1 (when s 50)
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